Electrochemical A-Ring Bromination of Estrogens

Ivan Damljanović, Mirjana Vukićević, and Rastko D. Vukićević*

Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia

Received May 10, 2006; E-mail: vuk@kg.ac.yu

A-ring bromination of estrogens has been achieved by constant current electrolysis of the solutions of these substrates and Et₄NBr in appropriate solvents. Thus, electrolysis consuming 2 F mol⁻¹ charge gave mixtures of 2- and 4-estrogens (1:1.1–2.5; up to 97%), whereas 4 F mol⁻¹ charge experiments yielded 2,4-dibromoestrogens as the sole products.

One of the major metabolism pathways of estrogens, which are important mammalian hormones, is A-ring functionalization¹ to give products, which are themselves active compounds, characterized by different biological properties.^{2–5} A-ring halogenated estrogens, which are not naturally occurring compounds, have been used in a variety of medical applications, such as diagnostic radio-imaging agents, 6 inhibitors of steroid metabolizing enzymes, 7 and metabolic probes of estrogen carcinogenesis.^{8,9} From a synthetic point of view, these compounds are interesting because they are good starting materials for the synthesis of the other A ring mono- and disubstituted derivatives. Thus, deuterium-labeled 10-12 and tritiated estrogens¹³ have been prepared starting from the corresponding brominated compounds. Naturally occurring A-ring-oxygenated compounds, which are metabolites of estrogens, have been synthesized by halogen-oxygen exchange reactions, 14-18 while the bromo-nitrogen exchange reaction had been used to synthesize 2-aminoestrogens. 19 Therefore, there is strong interest in the synthesis of A-ring-brominated estrogens.

The first well documented direct bromination of an estrogen has been reported by Woodward,²⁰ who obtained 2,4-dibromo- α -estradiol in a 68% yield by treating α -estradiol with N-bromoacetamide (NBA) in ethanol (EtOH). A better yield has been achieved in a similar dibromination of estriol by using N-bromosuccinimide (NBS).¹² Selective bromination of estrogens at the 2- or 4-position and dibromination with elemental bromine in acetic acid (AcOH) has been reported in 1962.²¹ However, it has not been confirmed in other laboratories.²² Wilbur and O'Brien²³ have tested several systems for bromination of estradiol, such as NCS/NaBr/EtOH, NCS/LiBr/THF, NBA/EtOH, NBS/EtOH, pyridinium bromide perbromide (PBPB)/EtOH, PBPB/THF, PBPB/AcOH, and Br₂/AcOH. Their investigations have shown that brominations with one equivalent of NCS and NBS independent of the solvent used give 2- and 4-bromo derivatives in a similar ratio (1:2.38-2.80), along with 2,4-dibromide. However, this ratio dramati-

X
RO
Y

1a
$$(R = R^2 = X = Y = H; R^1 = OH)$$
1b $(R = X = Y = H; R^1, R^2 = O)$
2a $(R = R^2 = Y = H; R^1 = OH; X = Br)$
2b $(R = Y = H; R^1, R^2 = O; X = Br)$
3a $(R = R^2 = X = H; R^1 = OH; Y = Br)$
3b $(R = X = H; R^1, R^2 = O; Y = Br)$
4a $(R = Ac; R^1 = OAc; R^2 = Y = H; X = Br)$
5a $(R = Ac; R^1 = OAc; R^2 = X = H; Y = Br)$
6a $(R = R^2 = H; R^1 = OH; X = Y = Br)$
6b $(R = H; R^1, R^2 = O; X = Y = Br)$

Scheme 1.

cally changes if Br_2 or PBPB in AcOH are used for bromination (1:1.27 and 1:0.85, respectively). All later reports concerning this reaction mainly confirm these results. 15,17,18,24,25

In continuation of our investigations of electrochemically generated agents and electrochemical halogenation of steroids, 26,27 we decided to subject β -estradiol (1a) and estrone (1b) to reaction conditions, in which bromine is generated at the anode. This technique has already been used in the bromination of organic compounds, 28 among which phenols have been used as substrates. 29 Although oxidation potentials of phenols strongly depend on the number and types of substituents, 30 the oxidation of bromides is possible using potential uncontrolled electrolysis. 29,30 Our focus has been to examine whether this methodology is applicable to the synthesis of brominated estrogens.

Bearing in mind the reaction conditions of classical brominations of estrogens with bromine described in the literature, ^{20,22} we started with constant current electrolysis (20 mA) of the substrate 1a in a 0.05 mol L⁻¹ glacial acetic acid solution of tetraethylammonium bromide. When this electrolysis was performed in an undivided electrolytic cell using a platinum anode and a graphite cathode, consuming 2Fmol⁻¹ charge, which generates one equivalent of bromine, a complex mixture of products was obtained. On the basis of the position of aromatic protons signals in ¹H NMR spectra, this mixture contained unconsumed 1a, both 2- (2a) and 4-bromoestradiol (3a) (Scheme 1), and some unknown products. Approximate calculations from the ¹H NMR spectrum showed that more than 50% of 1a remained. That prompted us to perform an experiment with 4 F mol⁻¹ charge consumption. However, even then considerable amounts of 1a remained.

In the next experiment substrate 1a was electrolyzed under the same conditions, but in a divided electrolytic cell with a ceramic membrane with $2 \,\mathrm{F}\,\mathrm{mol}^{-1}$ charge consumption. In the $^1\mathrm{H}\,\mathrm{NMR}$ spectrum of the obtained crude reaction mixture, compounds 2a and 3a and only negligible amounts of 1a were observed. Since monobromo derivatives have very similar R_f values in many solvents and in mixtures, the mixture was treated with acetyl chloride and pyridine, and the obtained diacetates (4a and 5a) were separated by column chromatography ($\mathrm{SiO}_2/\mathrm{ethyl}$ acetate–petrol ether 99:1). After hydrolysis, 2a and 3a were obtained as pure compounds in the ratio of

Table 1. Bromination of Estrogens

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
1a Acoh A b ca	Substrate	Solvent	Method ^{a)}	Products	11010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					/%	(2:3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1a	AcOH	A	2a + 3a	94	1:1.16 ^{b)}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			В	6a	95	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DMSO	A	2a + 3a	97	1:2.15 ^{b)}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			В	6a	92	
DMSO A $2\mathbf{b} + 3\mathbf{b}$ 87 1:1.20°) D $2\mathbf{b} + 3\mathbf{b}$ 91 1:1.18°) DMSO A $2\mathbf{b} + 3\mathbf{b}$ 96 1:2.50°) B $6\mathbf{b}$ 91 C $2\mathbf{b} + 3\mathbf{b}$ 90 1:2.30°)	1b	AcOH	A	2b + 3b	93	1:1.09 ^{c)}
DMSO $A = 2b + 3b = 91 = 1:1.18^{c}$ $A = 2b + 3b = 96 = 1:2.50^{c}$ $B = 6b = 91$ $C = 2b + 3b = 90 = 1:2.30^{c}$			В	6b	90	
DMSO A $2\mathbf{b} + 3\mathbf{b}$ 96 1:2.50°) B $6\mathbf{b}$ 91 C $2\mathbf{b} + 3\mathbf{b}$ 90 1:2.30°)			C	2b + 3b	87	1:1.20 ^{c)}
B $6b$ 91 C $2b+3b$ 90 1:2.30°)			D	2b + 3b	91	1:1.18 ^{c)}
C $2\mathbf{b} + 3\mathbf{b}$ 90 1:2.30°)		DMSO	A	2b + 3b	96	1:2.50 ^{c)}
			В	6b	91	
D $2b + 3b$ 96 1:2.60°			C	2b + 3b	90	1:2.30 ^{c)}
			D	2b + 3b	96	1:2.60 ^{c)}

a) See experimental. b) Based on the isolated bromides after acetylation/hydrolysis procedure. c) Estimated from ¹H NMR spectra of the mixture.

1:1.16 (94%), respectively.

On the other hand, when electrolysis was carried out under the same experimental conditions, but with $4\,\mathrm{F}\,\mathrm{mol}^{-1}$ charge consumption, 2,4-dibromoestradiol (**6a**, Scheme 1) was obtained as the sole product (95%), which could be identified by $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectroscopies.

Similar results were obtained with estrone (1b), as shown in Table 1 and Scheme 1. However, in this case, regioisomers 2b and 3b could not been separated, even after acetylation.

Since in classical bromination of estrogens with elemental bromine, 20,22 the solvent affects the distribution of 2- and 4-bromo products, several additional experiments were carried out using different solvents. The addition 5–10% of water or 20–30% of acetic anhydride to acetic acid did not affect either the overall yield or the ratio of **2** and **3** in the 2 F mol⁻¹ charge consumption experiments. Electrolysis in dichloromethane also gave similar results. However, the use of dimethyl sulfoxide as the solvent significantly changed the ratio of the 2- and 4-bromo isomers, although the overall yield remained almost the same (see Table 1). This solvent effect is not specific for the electrochemical reaction, and it has been found in chemical bromination of estrone with elemental bromine using the same solvents with or without Et₄NBr (see Table 1).

In conclusion, we have shown that β -estradiol and estrone can be smoothly brominated by anodically generated bromine from tetraethylammonium bromide dissolved in acetic acid or DMSO, in a divided electrolytic cell. Controlling the charge consumption, this method allows for the preparation of the corresponding 2- and 4-monobromo- and 2,4-dibromoestrogens in high yields. The regiochemistry of the monobrominated product depended on the solvent used. The process compares favorably in yield and ease of operation with classic bromination reactions but avoids the use of hazardous brominating reagents. Since the necessary equipment is very simple, inexpensive, and readily available, this methodology should replace classical ones.

Experimental

General. All chemicals were commercially available and used as received, except for the solvents which were purified by distil-

lation. A Uniwatt Beha Labor-Netzgerät (NG 394) was used as a direct current source for the electrolysis. A cylindrical glass vessel equipped with a magnetic stirrer, a cylindrical platinum foil as the anode ($\phi=2.5\,\mathrm{cm}$), a ceramic tube as the membrane ($\phi=1.5\,\mathrm{cm}$), and a graphite stick as the cathode ($\phi=0.5\,\mathrm{cm}$) was assembled as the divided electrochemical cell. NMR spectra were recorded on a Varian Gemini (200 MHz) spectrometer, using (CD₃)₂SO as the solvent. Chemical shifts are expressed in δ (ppm). IR measurements were carried out with a Perkin-Elmer 457 grating FT instrument in KBr tablets. For TLC, silica gel 60 on Al plates, layer thickness 0.2 mm (Merck), was used.

General Procedure for Electrochemical Bromination, **Methods A and B.** Substrate **1a** or **1b** (100 mg, \approx 0.37 mmol) and a 0.05 M solution of Et₄NBr in the corresponding solvent (20 mL) were placed in the anodic compartment of the cell (outside the ceramic tube). The same solution of Et₄NBr (2.5 mL) was used as the catholyte. Constant current electrolysis (20 mA) was stopped after 60 (method A) or 120 min (method B) in order to provide 2 or 4F mol⁻¹ charge. If acetic acid was used the solvent was removed by evaporation, H2O (20 mL) was added to the residue, and the mixture was extracted with three portions of ether $(3 \times 30 \,\mathrm{mL})$. The organic layers were first collected and washed with a solution of NaHSO₃ (10%, 40 mL) to remove residual amounts of bromine, then with saturated NaHCO₃ (40 mL), brine (40 mL), and H₂O (40 mL). After drying over anhydrous Na₂SO₄ overnight, the solvent was evaporated, and the crude reaction mixture was subjected to column chromatography on SiO₂ (5–10 g). The elution (dichloromethane) was monitored by TLC. Monobromides 2 and 3 were eluted as one fraction, whereas dibromides 6a and 6b were isolated as the pure compounds. In the case of substrate 1a the two isomeric monobromides were separated through an acetylation/hydrolysis procedure (see below).

If DMSO was used as the solvent, the mixture was diluted after electrolysis with water and extracted with Et₂O, then worked up as it is described above.

General Procedure for Chemical Bromination, Methods C and D. To a solution of Br_2 (60 mg, 0.37 mmol) in 20 mL of the corresponding solvent 1b (100 mg, 0.37 mmol) was added, and the mixture was stirred 2 h. Work up was the same as previous experiments (method C). For method D, Et_4NBr (210 mg) was added.

Acetylation/Hydrolysis Procedure for Separation of Monobromoestradiols. To a dichloromethane solution of crude reaction mixture obtained after the 2Fmol⁻¹ charge consumption electrolysis of β -estradiol (\approx 130 mg/10 mL), acetyl chloride (0.1 mL) and pyridine (0.1 mL) were added, and the resulting mixture was stirred vigorously overnights with a magnetic stirrer. The mixture was diluted with dichloromethane (20 mL), washed with water (30 mL), 1 mol L⁻¹ HCl, saturated NaHCO₃, brine and water subsequently and dried over anhydrous Na₂SO₄. After evaporation of the solvent, the mixture was separated by column chromatography (SiO₂/petrol ether-ethyl acetate 99:1) to give pure 4a and 5a. The separated diacetates were dissolved in 10 mL of 0.5 mol L⁻¹ KOH in methanol and the obtained solution was refluxed 2h. After evaporation of the methanol, to the resulting residue was added 20 mL of water, and the mixture extracted with ether $(3 \times 20 \,\mathrm{mL})$. Evaporation of the solvent gave pure compounds 2a and 3a.

2-Bromo-β-estradiol (2a): White solid; mp 189–192 °C (lit.: 197–198,²² 191–193,²³ 200–207 °C³¹); IR (cm⁻¹): 3248, 2955, 1604, 1500, 1414, 1342, 1255, 1053, 1026, 1008, 884, 730; ¹H NMR: δ 0.65 (s, 3H, 18-Me), 4.50 (d, J = 4.7 Hz, 1H, C17H),

6.62 and 7.26 (two s, 2H, C1 and C4), 9.81 (s, 3-OH); 13 C NMR: δ 11.4, 23.0, 26.2, 26.9, 28.8, 30.1, 36.7, 39.5, 43.0, 43.4, 49.6, 80.2, 106.6, 116.3, 129.5, 132.9, 137.0, 151.7.

2- and 4-Bromoestrone (2b and 3b): ¹H NMR: δ 0.80 (s, 3H, 18-Me of both isomers), 6.64 and 7.27 (two s, 2H, C1H and C4H of **2a**), 6.75 and 7.10 (two d, J = 8.5 Hz, 2H, C1H and C2H of **3a**), 9.55 (s, 1H, OH of **2a**), 9.97 (s, 1H, OH of **3a**).

4-Bromo-*β***-estradiol (3a):** White solid; mp 205–207 °C (lit.: 213–215, 22 207–208.5, 23 209–211, 31 209–212 °C³²); IR (cm⁻¹): 3399, 3153, 2924, 2854, 1467, 1378, 1292, 976, 790; 1 H NMR: δ 0.64 (s, 3H, 18-Me), 4.50 (d, J = 4.7 Hz, 1H, C17H), 6.74 and 7.08 (two d, J = 8.4 Hz, 2H, C1H and C2H), 9.83 (s, 1H, 3-OH); 13 C NMR: δ 11.4, 22.9, 26.4, 27.2, 30.1, 31.0, 36.7, 37.8, 42.9, 43.9, 49.6, 80.2, 112.7, 113.3, 125.1, 132.9, 136.5, 152.0.

2-Bromo-3,17β**-estradiol Diacetate (4a):** White solid; mp 165–168 °C (lit.: 166–168 °C²²); IR (cm⁻¹): 3067, 2964, 2927, 1770, 1728, 1486, 1375, 1255, 1197, 1042, 910; ¹H NMR: δ 0.78 (s, 3H, 18-Me), 2.00 (s, 3H, COMe), 2.28 (s, 3H, COMe), 4.60 (t, J = 8.1 Hz, 1H, C17H), 6.96 and 7.49 (two s, 2H, C1H and C4H); ¹³C NMR: δ 12.1, 20.8, 21.1, 23.0, 25.8, 26.4, 27.4, 28.6, 36.6, 37.7, 42.7, 43.4, 49.2, 82.0, 112.5, 124.1, 129.8, 138.0, 140.2, 145.6, 168.8, 170.7.

4-Bromo-3,17β**-estradiol Diacetate (5a):** White solid; mp 168–171 °C (lit.: 175.5–177.5, 22 171–173 °C 32); IR (cm $^{-1}$): 2968, 2930, 2874, 2852, 1769, 1721, 1470, 1370, 1261, 1197, 1043, 1019; 1 H NMR: δ 0.77 (s, 3H, 18-Me), 2.01 (s, 3H, COMe), 2.29 (s, 3H, COMe), 4.62 (t, J = 8.0 Hz, 1H, C17H), 7.04 and 7.37 (two d, J = 8.4 Hz, 2H, C1H and C2H); 13 C NMR: δ 12.1, 20.1, 21.1, 23.0, 26.1, 26.8, 27.4, 29.2, 30.9, 36.6, 37.1, 37.7, 42.6, 43.8, 49.2, 82.1, 118.8, 120.9, 125.8, 137.4, 140.3, 146.1, 168.8, 170.7.

2,4-Dibromo-*β*-estradiol (6a): White solid; mp 219–222 °C (lit.: 223–226,²² 225–226,²³ 220–222 °C³³); IR (cm⁻¹): 3585, 3293, 1542, 1464, 1269, 1180, 1014, 761; ¹H NMR: δ 0.62 (s, 3H, 18-Me), 4.52 (d, J = 4.7 Hz, 1H, C17H), 7.37 (s, 1H, C1H), 9.50 (s, 1H, 3-OH); ¹³C NMR: δ 11.3, 22.9, 26.3, 27.0, 30.1, 31.2, 36.6, 37.6, 42.8, 43.5, 49.5, 80.1, 108.8, 116.6, 128.5, 135.5, 136.5, 148.5.

2,4-Dibromoestrone (6b): White solid; mp 224–226 °C (lit.: 220–226, ³³ 235–237 °C³⁴); IR (cm⁻¹): 3270, 2937, 2869, 1723, 1545, 1464, 1275, 1171, 762; ¹H NMR: δ 0.79 (s, 1H, 18-Me), 7.40 (s, 1H, C1H), 9.53 (s, 1H, OH); ¹³C NMR: δ 13.6, 21.2, 25.6, 26.1, 31.0, 31.3, 35.5, 36.8, 43.4, 47.3, 49.5, 108.9, 115.6, 128.6, 134.9, 135.4, 148.6, 219.6.

This work was supported by the Ministry of Science and Environmental Protection of the Republic of Serbia (grant 2042).

References

- 1 J. Fishman, Endocr. Metab. 1963, 23, 207.
- 2 E. L. Cavalieri, D. E. Stack, P. D. Devanesan, R. Todorovic, I. Dwivedy, S. Higginbotham, S. L. Johansson, K. D. Patil, M. L. Gross, J. K. Gooden, R. Ramanathan, R. L. Cerny, E. G. Rogan, *Proc. Natl. Acad. Sci. U.S.A.* **1997**, *94*, 10937.

- 3 J. G. Liehr, Endocr. Rev. 2000, 21, 40.
- 4 P. Ball, R. Knuppen, Acta Endocrinol., Suppl. 1980, 232, 1.
- 5 N. J. Macluskey, F. Naftolin, L. C. Krey, S. Franks, *J. Steroid Biochem.* **1981**, *15*, 111.
- 6 J. A. Spicer, D. F. Preston, R. J. Baranczuk, E. Harvey, M. M. Guffey, D. L. Bradshaw, R. G. Robinson, *J. Nucl. Med.* **1979**, *20*, 761.
- 7 M. Numazawa, S. Satoh, *J. Steroid Biochem.* **1989**, *33*, 111.
 - 8 J. G. Liehr, Mol. Phamacol. 1983, 23, 278.
- 9 J. J. Li, R. H. Purdy, E. H. Appelman, J. K. Klicka, S. A. Li, *Mol. Pharmacol.* **1985**, 27, 559.
- 10 J. Pinkus, D. Charles, S. C. Chattoraj, *J. Biol. Chem.* **1971**, 246, 633.
- 11 J. Fishman, H. Guzik, L. Hellman, *Biochemistry* **1970**, 9, 1593.
 - 12 B. H. Albrecht, D. D. Hagerman, Steroids 1972, 19, 177.
- 13 M. M. Coombs, H. R. Roderick, Steroids 1968, 11, 925.
- 14 P. N. Rao, J. E. Burdett, Jr., Synthesis 1977, 168.
- 15 X. Zheng, W. Wang, Z. Zhong, Z. Xu, H. Zhao, *Steroids* **1982**, *40*, 121.
- 16 M. Numazawa, Y. Ogura, K. Kimura, M. Nagaoka, J. Chem. Res., Synop. 1985, 348.
 - 17 D. J. Pert, D. D. Ridley, Aust. J. Chem. 1989, 42, 421.
- 18 A. J. Lee, S. J. Walter, W. E. Cotham, T. B. Zhu, *Steroids* **2004**. *69*. 61.
 - 19 M. Numazawa, K. Kimura, Steroids 1983, 41, 675.
- 20 R. B. Woodward, J. Am. Chem. Soc. 1940, 62, 1625.
- 21 W. R. Slaunwhite, Jr., L. Neely, *J. Org. Chem.* **1962**, 27, 1749
- 22 T. Utne, R. B. Jobson, F. W. Landraf, *J. Org. Chem.* **1968**, *33*, 1654.
 - 23 D. S. Wilbur, H. A. O'Brien, J. Org. Chem. 1982, 47, 359.
 - 24 Z. Szendi, G. Dombi, I. Vincze, Steroids **1991**, 56, 392.
- 25 P. C. Bulman Page, F. Hussain, N. M. Bonham, P. Morgan, J. L. Maggs, B. K. Park, *Tetrahedron* **1991**, *47*, 2871.
- 26 S. Milisavljević, R. D. Vukićević, *J. Serb. Chem. Soc.* **2004.** *69.* 941.
- 27 S. S. Milisavljević, K. Wurst, G. Laus, M. D. Vukićević, R. D. Vukićević, Steroids 2005, 70, 867.
- 28 Organic Electrochemistry an Introduction and Guide, 3rd ed., ed. by H. Lund, M. M. Baizer, Marcel Dekker, New Yurk, 1991.
 - 29 T. Bejerano, E. Gileadi, Electrochim. Acta 1976, 21, 231.
- 30 M. M. Ngundi, O. A. Sadik, T. Yamaguchi, S. Suye, *Electrochem. Commun.* **2003**, *5*, 61, and literature cited there.
- 31 A. J. Lee, J. W. Sowell, W. E. Cotham, B. T. Zhu, *Steroids* **2004**, *69*, 61.
- 32 A. D. Cross, E. Denot, R. Acevedo, R. Urquiza, A. Bowers, *J. Org. Chem.* **1964**, 29, 2195.
- 33 M. Cushman, H.-M. He, J. A. Katzenellenbogen, R. K. Varma, E. Hamel, C. M. Lin, S. Ram, Y. P. Sachdeva, *J. Med. Chem.* **1997**, *40*, 2323.
- 34 E. Schwenk, C. G. Castle, E. Joachim, *J. Org. Chem.* **1963**, 28, 136.